On the Laguerre Method for Numerically Inverting Laplace Transforms
نویسندگان
چکیده
The Laguerre method for numerically inverting Laplace transforms is an old established method based on the 1935 Tricomi-Widder theorem, which shows (under suitable regularity conditions) that the desired function can be represented as a weighted sum of Laguerre functions, where the weights are coefficients of a generating function constructed from the Laplace transform using a bilinear transformation. We present a new variant of the Laguerre method based on: (1) using our previously developed variant of the Fourier-series method to calculate the coefficients of the Laguerre generating function, (2) developing systematic methods for scaling, and (3) using Wynn’s ǫ-algorithm to accelerate convergence of the Laguerre series when the Laguerre coefficients do not converge to zero geometrically fast. These contributions significantly expand the class of transforms that can be effectively inverted by the Laguerre method. We provide insight into the slow convergence of the Laguerre coefficients as well as propose a remedy. Before acceleration, the rate of convergence can often be determined from the Laplace transform by applying Darboux’s theorem. Even when the Laguerre coefficients converge to zero geometrically fast, it can be difficult to calculate the desired functions for large arguments because of roundoff errors. We solve this problem by calculating very small Laguerre coefficients with low relative error through appropriate scaling. We also develop another acceleration technique for the case in which the Laguerre coefficients converge to zero geometrically fast. We illustrate the effectiveness of our algorithm through numerical examples. Subject classifications: Mathematics, functions: Laplace transforms. Probability, distributions: calculation by transform inversion. Queues, algorithms: Laplace transform inversion.
منابع مشابه
Numerical Inversion of Multidimensional Laplace Transforms by the Laguerre Method
Numerical transform inversion can be useful to solve stochastic models arising in the performance evaluation of telecommunications and computer systems. We contribute to this technique in this paper by extending our recently developed variant of the Laguerre method for numerically inverting Laplace transforms to multidimensional Laplace transforms. An important application of multidimensional i...
متن کاملInfinite-series Representations of Laplace Transforms of Probability Density Functions for Numerical Inversion
In order to numerically invert Laplace transforms to calculate probability density functions (pdf’s) and cumulative distribution functions (cdf’s) in queueing and related models, we need to be able to calculate the Laplace transform values. In many cases the desired Laplace transform values (e.g., of a waiting-time cdf) can be computed when the Laplace transform values of component pdf’s (e.g.,...
متن کاملInfinite-series Representations of Laplace Transforms of Probability Density Functions for Numerical Inversion
Abstract In order to numerically invert Laplace transforms to calculate probability density functions (pdf’s) and cumulative distribution functions (cdf’s) in queueing and related models, we need to be able to calculate the Laplace transform values. In many cases the desired Laplace transform values (e.g., of a waiting-time cdf) can be computed when the Laplace transform values of component pdf...
متن کاملA Unified Framework for Numerically Inverting Laplace Transforms
where the weights k and nodes k are complex numbers, which depend on n, but do not depend on the transform f̂ or the time argument t. Many different algorithms can be put into this framework, because it remains to specify the weights and nodes. We examine three one-dimensional inversion routines in this framework: the Gaver-Stehfest algorithm, a version of the Fourier-series method with Euler su...
متن کاملThe Fourier-series method for inverting transforms of probability distributions
This paper reviews the Fourier-series method for calculating cumulative distribution functions (cdf’s) and probability mass functions (pmf’s) by numerically inverting characteristic functions, Laplace transforms and generating functions. Some variants of the Fourier-series method are remarkably easy to use, requiring programs of less than fifty lines. The Fourier-series method can be interprete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- INFORMS Journal on Computing
دوره 8 شماره
صفحات -
تاریخ انتشار 1996